Localization of Radioactive Sources

Zhifei Zhang

Outline

- Background and motivation
- Our goal and scenario
- Preliminary knowledge
- Related work
- Our approach and results

Background and Motivation

- For security purpose or searching missing radiological materials, localization of radioactive source is required.
- Many algorithms exist to perform source detection or identification. However, efforts at source localization are limited (e.g., maximum count rate, MLE).
- The detecting output may vary with angle, distance, duration time, and environment (e.g., background, shadow of obstacles).

Background and Motivation

The detector can be carried by a helicopter, truck, or human. An naïve way of radioactive source localization is base on maximum count rate.

Longer detecting time \rightarrow more particles are captured \rightarrow higher SNR \rightarrow act count rate with higher con

 \rightarrow get count rate with higher confidence

Background and Motivation

Aerial detection

Maximum count rate:

Search every corner of the target area to find the location with the maximum count rate.

A more efficient way: Train a model in prior, and then estimate the location by Maximum Likelihood Estimation (MLE).

Goal: Localize (angle θ and distance r) the radioactive source through human-carried detector.

Scenario: A person with a backpack, carrying a group of sensors with certain structure. Assume a radioactive source rotates around the person.

Simulation on different distances.

Final Goal:

Estimate a model or function of angle θ and distance r, $\mu(\theta, r)$, for each detector, so that count rate of the *i*th detector equals to $\mu_i(\theta, r)$. Assume an observation of the *i*th detector at θ and r is T_i , thus

 $T_i \approx \mu_i(\theta, r)$

In practice, the radioactive source is fixed and the person is moving. Given $\mu(\theta, r)$ and an observation *T*, the correspond θ and *r* can be estimated by:

- MLE: $\arg \max_{\theta,r} P(T|\mu(\theta,r))$
- 1NN: $\arg\min_{\theta,r} ||T \mu(\theta,r)||_2$

(More details later ...)

Preliminary Knowledge

Activity: The total number of emission per second in all directions from the source. It is a constant

 $1Ci = 3.7 \times 10^{10}$

Count rate (T): The number of emissions record by the detector. The observed count rate is always much less than the activity.

Preliminary Knowledge

Uncertainty: Smaller count rate will result in higher uncertainty.

$$T \sim N(T, \sqrt{T}^2)$$

Model-free (sensor network):

- Angle-base (Mean of Estimates) [D. Niculescu et al., 2003]
- Distance-based (Apollonius circle) [J.C. Chin et al., 2008]
- Maximum count rate (stationary source) [D.K. Fagan et al., 2012]

Model-based:

Maximum Likelihood Esitmation (MLE) [A. Gunatilaka et al., 2007]

- Gaussian noise model [K.D. Jarman et al., 2011]
- Poisson noise model [M. Wieneke et al., 2012]

Model-free (sensor network):

- Angle-base (Mean of Estimates) [D. Niculescu et al., 2003]
- Distance-based (Apollonius circle) [J.C. Chin et al., 2008]
- Maximum count rate (stationary source) [D.K. Fagan et al., 2012]

Three sensors are sufficient for localizing the source

Model-free (sensor network):

- Angle-base (Mean of Estimates) [D. Niculescu et al., 2003]
- Distance-based (Apollonius circle) [J.C. Chin et al., 2008]
- Maximum count rate (stationary source) [D.K. Fagan et al., 2012]

Four sensors are sufficient for localizing the source

Model-free (sensor network):

- Angle-base (Mean of Estimates) [D. Niculescu et al., 2003]
- Distance-based (Apollonius circle) [J.C. Chin et al., 2008]
- Maximum count rate (stationary source) [D.K. Fagan et al., 2012]

Exhaustive search in a area

Aerial detection

Model-based:

Maximum Likelihood Estimation (MLE) [A. Gunatilaka et al., 2007]

- Gaussian noise model [K.D. Jarman et al., 2011]
- Poisson noise model [M. Wieneke et al., 2012]

1) Assume an parametric model of count rate and distance:

$$\mu_k(x_0, y_0) = \frac{I}{(x_k - x_0)^2 + (y_k - y_0)^2} + b$$

) Assume Gaussian noise:

$$T_k \sim \mathcal{N}(\mu_k, \mu_k)$$

3) Maximize the likelihood: $[\hat{x}_0, \hat{y}_0] = \arg \max_{x_0, y_0} P(T_1, T_2, \cdots, T_k | \mu)$

Model-based:

Maximum Likelihood Esitmation (MLE) [A. Gunatilaka et al., 2007]

- Gaussian noise model [K.D. Jarman et al., 2011]
- Poisson noise model [M. Wieneke et al., 2012]

The only difference is in the 2nd step, assuming Poisson noise:

$$P(T_k; \lambda = \mu_k) = \frac{e^{-\mu_k} \cdot \mu_k^{T_k}}{T_k!}$$

Related work:

- Scattered detectors
- Parametric model
- Gaussian noise
- Maximum likelihood

Ours approach:

- Structured detectors
- Non-parametric model
- Gaussian noise
- Maximum likelihood (1NN)

The data we have:

- Angles:
 - -5 ~ 185 degree with increment of 5 degree.
- Distances:
 - 1 ~ 5m with increment of 0.5m;
 - 6~10m with increment of 1m;
 - 15 and 20m.

The raw data

The noisy data

Raw data of the *i*th detector

Step 1: Construct $\mu_i(\theta, r)$, i = 1, 2, 3 (assume three detectors):

- 1) Interpolation (regression) on both θ and r
- 2) Build 2-D lookup table (angle vs. distance)

 $\mu_i(\theta, r)$ after interpolation

Step 2: Assume Gaussian noise: $T_i \sim \mathcal{N}(\mu_i(\theta, r), \mu_i(\theta, r))$

$$P(T_i|\mu_i(\theta,r)) = \frac{1}{\sqrt{2\pi\mu_i(\theta,r)}} e^{-\frac{(T_i-\mu_i(\theta,r))^2}{2\mu_i(\theta,r)}}$$

Step 3: Maximum likelihood estimation:

$$\left[\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{r}}\right] = \arg\max_{\boldsymbol{\theta}, \boldsymbol{r}} P(\boldsymbol{T}_1, \boldsymbol{T}_2, \boldsymbol{T}_3 | \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\mu}_3)$$

Assume the three detectors are independent,

$$P(T_1,T_2,T_3|\mu_1,\mu_2,\mu_3)$$

$$= P(T_1|\mu_1, T_2|\mu_2, T_3|\mu_3)$$

$$= P(T_1|\mu_1)P(T_2|\mu_2)P(T_3|\mu_3)$$

$$=\sum_{i=1}^{3}\frac{1}{\sqrt{2\pi\mu_{i}}}\exp\left(-\frac{(T_{i}-\mu_{i})^{2}}{2\mu_{i}}\right)$$

Log-likelihood:

$$= -\frac{1}{2} \sum_{i=1}^{3} \log(2\pi\mu_i) - \frac{1}{2} \sum_{i=1}^{3} \frac{(T_i - \mu_i)^2}{\mu_i}$$

Finally,

$$\arg\min_{\theta, r} \left(\sum_{i=1}^{3} \log \mu_i + \sum_{i=1}^{3} \frac{(T_i - \mu_i)^2}{\mu_i} \right)$$

In practice, we may have only one sample for each (θ, r) pair.

$$\arg\min_{\theta,r} \left(\sum_{i=1}^{3} \log \left| \mu_i \right| + \sum_{i=1}^{3} \frac{(T_i - \mu_i)^2}{(\mu_i)} \right)$$

Equivalent to 1NN:

Random leave-n-out cross validation, 1000 iteration:

4/13/2016

Random leave-n-out cross validation, apply 1NN 1000 iteration :

27

If there are enough samples to estimate $\mu_i(\theta, r)$, apply MLE:

4/13/2016

